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Proposition 0.1 (Exercise X.10.3).
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Proof. For r > 0, let S, denote the half circle parametrized by ~,(t) = re with t € [0, 7).
For R > 0 and € > 0, let I'c g be the closed curve
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We will evaluate the above integral by evaluating
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This is equal to zero because 1 —5— 1s holomorphic away from z = 0, and zero is in the

exterior of I'c . First consider the integral over Sg, which we can rewrite as
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We can bound the integrand by
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Now consider the integrals on the real axis.
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First, note that
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This comes in handy, because now we can recognize the integral over the real axis as a
multiple of the real integral we want to evaluate.
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Putting this all together,
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So we just need to compute the integral over S, which needs to be 27 to get the desired
result. First, we need a particular limit. Note that we have the power series
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Now that we have this limit, we write the integral of S, as
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And now we do some estimation:
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Using what we showed above hII(l] = —2i |, there exists € > 0 so that
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Rewriting this, we get exactly what we wanted:
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To recap,
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Proposition 0.2 (Exercise X.10.4). Let a > 0 and b > 0. Then
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Proof. Let a > 0 and b > 0. Define



Then f is holomorphic except at +ib, which are poles of order 2, since the denominator
factors as (z — ib)?(z + ib)%. Let Sg be the semicircle of radius R in the upper half plane,
parametrized by Re with ¢ € [0, 7], and let I'g be the contour [~ R, R] U Sg. The only pole
inside I'g is ib, so by the residue theorem, for R > b, we have

f(2)dz = 2mivresy, f

We compute the residue as
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Note that along the real axis, we have a nice relationship between the real part of f and the
real function we want to integrate.
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The integral involving sin(az) vanishes because (j;f;”;)Q is an odd function, so the integral

from —R to zero cancels the integral from zero to R. The last equality follows because
cos(ax) is even, so the integral from —R to zero is equal to the integral from zero to R. Thus

, B cos(ax)
b ) e =5 (s, [ s

Now we claim that as R — oo, the contribution from the integral over Si goes to zero.
Taking the absolute value, we get
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which we can see clearly goes to zero as R — oo. Thus
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Proposition 0.3 (Exercise X.10.6). For a > 1, we have
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Proof. Let a > 1 and define « = a + va? — 1 and = a — va? — 1. Then we can rewrite
our integrand as
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This motivates us to define a function
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which is holomorphic except at simple poles z, «, 5. Let v be the unit circle, parametrized
by v(t) = e" for t € [0, 2n]. Then
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Now we can compute fv f(2)dz using the residue theorem. The pole at zero is inside 7. Since
a > 1, a is outside the circle, and S is inside. The index of v around both zero and £ is one,
so by the residue theorem
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/f(z)dz = 2mi(resy f + resg f)

We compute the residues by
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NOTE: In the next problem, I switched the roles of a and b from the problem statement
given by Prof Schenker in order to help myself emulate the example problem Example 3 from
page 134 of Sarason and avoid confusing myself. Sorry if it confuses you.
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Proposition 0.4 (Exercise 1). Leta > 1 and =1 <b<a—1. Then
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Proof. We choose branches of 2 and z° on the same slit plane, both taking value 1 at z = 1.

Then the function )

f(z) =

is holomorphic on the slit plane except at a simple pole at zy = €™/, For r > 0, let A, be
the circular arc {7’ 0<fh< < } oriented counterclockwise. For 0 < € < R, let I', p denote
the closed curve

1+ z¢
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Then I'c g winds once around 2y, so by the residue theorem,
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We can compute the residue since the denominator has a simple pole at 2, by
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Over the interval [¢, R], we have
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Over the segment [662”/“, Re2”/a}, we use the parametrization v(t) = te? "/ for t € [¢, R],
and get
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This says that
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We will show that the contributions from the integrals over A, and Ag are zero in the limit
as € — 0 and R — oo. Consider the integral over A..
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As € — 0, the denominator of the integrand goes to one and the numerator goes to zero, so
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Now consider the integra over Ag.
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We can estimate the integrand by
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By hypothesis, b+ 1 < a, so this tends to zero as R — oco. Now we can take the limit of
Equation 0.1 as ¢ = 0 and R — oo, and the A., Ag terms drop, so
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which we can rewrite as ,
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Now we attempt to simplify this, so that we can convince ourselves that it’s actually a real
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Proposition 0.5 (Exercise 2). Let k € R. Then
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Proof. Define

eikz
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Then f is holomorphic on C except for the fourth roots of —1, which are e™/*, 37/4 5mi/4

and e™/4. Note that the first two lie in the upper half plane and the second two lie in the
lower half plane. Let z; = e™/* and z, = e3™/4,

For R > 0, let Sk be the semicircle in the upper half plane parametrized by Sg(t) = Re®
with ¢ € [0,7]. Let I'g be the contour [-R, R] U Sg. For R > 1, I'r winds once around z;

and zo but not around the other roots, so by the Residue Theorem,
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We can compute the residues using Exericise VIII.12.1, since they are simple poles:
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We claim that the integral [, f Sk z)dz goes to zero as R goes to infinity. We have the following
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And clearly the limit as R — oo of the far right is zero, so the claim is proven. Thus
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Finally, we do a tedious calculation to find the sum of the two residues.
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Now we work with the right part of the product in the numerator.

V22 4 e thVR/2 = cos(kv/'2/2) + isin(kv'2/2) + i cos(—kv'2/2) + i sin(—kv/2/2)
= cos(kV/'2/2) + isin(kv/2/2) + i cos(kv/2/2) + sin(kv/2/2)
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(Aside: We shouldn’t be surprised that this integral is real, because even though the function
isn’t real valued on the real axis, the imaginary part is

sin(kx)
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which is an odd function, so the symmetric integral
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must be zero. End aside.) O



